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The Tesla wireless transmission of energy original experiment,  proposed again in a downsized 
scale by K. Meyl, has been replicated in order to test the hypothesis of the existence of electroscalar  
(longitudinal) waves. Additional experiments have been performed, in which we have investigated the 
features of the electromagnetic processes between the two spherical antennas. In particular, the origin 
of coils resonances has been measured and analyzed. Resonant frequencies calculated on the basis of 
the generalized electrodynamic theory, are in good agreement with the experimental values found. 
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1. Introduction 
 In the early twentieth century, Tesla conducted experiments in which he 

demonstrated unusual properties of electromagnetic waves. Results of 
experiments have been published in the newspapers, and many devices were 
patented (e.g. [1]). However, such work has not received suitable theoretical 
explanation, and so far no practical application of the results have been 
developed. 

One hundred years later, Professor K. Meyl [2] aimed to reproduce the 
same experiments using a miniature, laboratory version of the Tesla setup, 
arguing that it can help to detect unusual phenomena that are explained by the 
presence of electroscalar (longitudinal) waves, namely: 

• the reaction on the transmitter of the presence of the receiver; 
• the transmission of scalar waves with a speed of 1,5 times the speed of 

light; 
• the inefficiency of a Faraday cage in shielding scalar waves, and 
• the possibility of wireless transmission of electrical energy. 

Nearly ten years have passed since the publication of the results of K. Meyl 
experiments. However, despite this, they still have not received a clear 
theoretical explanation. Some authors, for example [3], believe that the observed 
phenomena can be explained on the basis of the properties of ordinary transverse 
electromagnetic waves. It has been suggested that the set-up of K. Meyl does not 
play all the experimental conditions of Tesla. 

Are there really unexplored components of the electromagnetic wave? 
Under what conditions do they occur? Which are their properties? These are 
important questions that remain open. From the answers depend our assessment 
of the current state of electrodynamics and science in general. In this situation it 



is needed a balanced and pragmatic approach allowing to take into account all 
the correct facts and give them the correct interpretation. 

The relevance of setting and study the issues raised above is now obvious. 
There are a lot of experimental facts and theoretical considerations that require 
interpretation. The so-called electroscalar waves have been observed in the 
experiments carried on by C. Monstein and J. P. Wesley [4], and by G.V. 
Nikolaev [5]. Theoretical substantiation of the physical meaningfulness of the 
electroscalar  waves is contained in N.P. Hvorostenko [6], A.K. Tomilin [7-9], 
Koen J. van Vlaenderen [10], D.A. Woodside [11].  The problem of 
experimental detection electroscalar  waves is also dealt with by G. Bettini [17]. 
Interesting results are contained in the Elmore G. paper [18]. 

 This work includes experimental and theoretical parts. The basic K. Meyl 
experiments have been reproduced, and supplemented with new experiments to 
detect and describe the phenomena that cannot be explained on the basis of 
modern electromagnetic field theory. The included theoretical analysis is based 
on a generalized theory aimed to complete the modern electrodynamics for 
encompassing all known (including the little-studied) experimental facts and 
natural phenomena. 
 

2. The K. Meyl experiments summary 
The system originally proposed by Tesla [1]  (Fig. 1) consisted of a 

transmitter including a resonant transformer with a strong elevation of potential: 
the high inductance spiral secondary coil, loaded by a low capacitance 
“elevated” metal sphere, was coupled to a low inductance spiral primary coil1. 
The transmitter primary was driven by a high frequency, high voltage supply. 
The receiver was identical and symmetrical. The load was e.g. a set of lamps 
connected in parallel at the receiver output. As affirmed by Tesla himself, the 
ground connection in this structure plays an important role. 

With this structure Tesla did actually demonstrate something that today 
would be unthinkable to be done with Hertz radio waves: in Colorado Springs 
he built two towers, one 10 kW transmitter and a receiver located at a distance of 
25 miles, and he demonstrated that it could be receive substantially 100% of the 
transmitted power, in facts, he could power 200 fluorescent lamps of 50 watts 
each. The experiment was published in the contemporary newspapers. 

K. Meyl [2] experiment is inspired by Nikola Tesla patent mentioned 
above. In fact, the structure used is a miniature version (but not on scale) of the 
receiver and transmitter towers of the original installation of Tesla. Here, 
however, the size of the "towers" is about thirty centimeters. Each tower has a 
flat Tesla coil in its base plate, consisting of a two turns spiral primary coil and a 
many turns spiral secondary coil, made on a single printed circuit board. A 

                                                             
1 In some implementations by Tesla himself, the primary was brought to resonance  adding  
high-capacity capacitors in parallel. 



sphere with metal surface is placed on top, connected by a wire  to the inner end 
of the secondary. 

 

 
In order to make precise measurements of frequency, Meyl adopted a small 

synthesized frequency generator with digital readout. Due to the relatively small 
size of the equipment, the frequency range of the resonance that results is in the 
order of a few MHz, while Tesla was working at frequencies much lower. In 
addition, these small-scale demonstration devices are fed with signals voltage of 
about 2 V, while Tesla, in his great power wireless transmission installation, 
used about 60 kV supply (the antenna potential being much higher). 

In Fig. 2 is outlined the structure adopted by Meyl. The RF generator is 
connected in parallel to the primary of the Tesla Coil (TC) transmitter, two 
LEDs in anti-parallel are connected across TC input too. The TC secondary is 
isolated from the primary. The inner end, as already mentioned, is connected to 
the metal ball; the outer one is connected to the "earth", which in this experiment 
is emulated, in a "degenerate" way, with a single copper wire that reaches the 
receiver. 

Fig. 1 



 
 

Fig. 2 

The transmitter and receiver are completely symmetric. As a "load" two 
LEDs are connected in anti-parallel, symmetric and similar to those present at 
the transmitter. Photo set K. Meyl shown in Fig. 3. 

 
Fig. 3 

 
In his experiment, K. Meyl has adopted the following procedure: 
• First step: The output level of the generator set to approximately 2V. The 

generator frequency is adjusted, until the resonant frequency are detected by the 
brightness of the LEDs on the receiver. The [main, higher] resonance is found at 
a frequency МHzf 702   . At the resonance, the transmitter LEDs turn off. 

• Second step: Then the receiver earth wire is disconnected.  In this case the 
receiver LEDs are extinguished and the transmitter will light up brightly. That 



is, the transmitter "feels" if the receiver receives the signal. K. Meyl called it "a 
reaction to the receiver back to the transmitter." 

• Third step: tuning down the frequency, another resonance is found at 
МHzf 7,401   ; here the receiver LEDs are less shining, and the signal is easily 

screened. The reverse reaction of the transmitter to the receiver is absent. 
Professor K. Meyl interprets the phenomena described above as follows. 
In the first step of the procedure, adjusting the frequency generator to the 

appropriate frequency, it results: 
a) receiver LED lights up. Meyl interpretation: "In this condition the 

energy transfer takes place”; 
b) simultaneous fading down of the transmitter's LED. Meyl 

interpretation: “Back-reaction of the receiver on the transmitter”. 
In the second step of the procedure, the transmitter LED lights again, when 

the operator disconnects the receiver. Meyl interpretation: “This is a proof of the 
back-reaction of receiver on the transmitter”. 

In the third step, for the resonance at lower frequency, МHzf 7,401  , it is 
highlighted that occurs:  

a) lower intensity of the LED, 
b) signal can be easily shielded, 
c) lack of marked back-reaction on the  transmitter. 

Meyl interpretation for  points a,b,c above: “This is conventional, Hertzian 
waves. This is a proof that scalar waves speed (for resonance at 7MHz) is 
higher than the one of Hertzian waves (resonance at 4.7MHz). In particular, 
scalar waves speed results 7/4,7=1,5 times the speed of light2”. 
 

3. Replication of the K. Meyl experiments and discussion 

3.1 Basic replication 
The K. Meyl experiment has been replicated in the laboratory of the Rai 

Research and Technological Innovation Cent (Italy). From the cited paper not 
the all parameters of the TC are disclosed, but, under the likely hypothesis that 
from the geometrical dimensions will depend only the resonance frequencies, 
not the overall behavior of the system, it was decided to proceed building two 
pairs of coils with size roughly similar to the Meyl’s ones, thus accepting some 
uncertainty margin. 

We used a standard sinusoidal signal generator HP33120A. As indicators, 
the LEDs were first used. Initially, the entire apparatus was placed on the bench, 
the distance between transmitter and receiver being quite limited (approximately 
0.5 m). 

 
 

                                                             

2No explanations is given in the paper. 



Transmitter 
Primary 
Winding type Counter-clockwise spiral 
Number of turns 2 turns 
Wire type Copper ribbon, 8mm x 0.5mm 
Inner diameter 150mm 
Outer diameter 163mm 
Secondary 
Winding type Counter-clockwise spiral 
Number of turns 31 turns 
Wire type coax cable, 1.3mm diameter (1.7mm including outer 

insulation; outer + inner conductors used together as 
single conductor) 

Inner diameter 10mm 
Outer diameter 117mm 
Antenna 
Pole Bakelite tube, l= 195mm with internal wire.  
Sphere 63mm polystyrene sphere coated with aluminium foil 

Receiver 
Primary 
Winding type clockwise spiral 
Number of turns Same as Tx 
Wire type Same as Tx 
Inner diameter Same as Tx 
Outer diameter Same as Tx 
Secondary 
Winding type clockwise spiral 
Number of turns Same as Tx 
Wire type Same as Tx 
Inner diameter Same as Tx 
Outer diameter Same as Tx 
Antenna 
Pole Same as Tx 
Sphere Same as Tx 
 

Both helical  coils  (primary  and  secondary) are shown in the photograph 
(Fig.4).  

 
 
 
 

 



Fig. 4 
 
The first step: The generator output level is set approximately 2V. The 

oscillator frequency is adjusted until the LED on the receiver will shine brightly. 
This corresponds to the resonance frequency 02f  . 

The above statements have been verified; in our experiment, as expected, 
the resonance frequencies 02f  differ from experiment K. Meyl because of the 
size of the coils. The values found are: МHzf 27,1102  .  

The second step: Grounding the receiver is disconnected. Then, the 
receiver LEDs turn off and the transmitter LEDs turn on again. Thus, as if the 
transmitter "feels" that the signal has been received by the receiver ("the reaction 
of the transmitter to the receiver"). The above statements have been verified. 

In the third step we found the expected resonance at lower frequencies. 
The frequency found is: МHz,f 5801  . Instead, the less clear "reaction" back on 
the transmitter at this lower frequency is not evident. 

3.2  Discussion of the basic phenomenology 
Phenomenon 1: The transmitter LED is "normally" on. (except in special 

circumstances). This behavior is easily explained, noting that the LED is in 
parallel with the same RF generator, so it is normally powered by the latter. 

Phenomenon 2:  By adjusting the frequency of the generator there is a 
value (8.5 MHz, see above) in which the receiver LED lights up.  
This effect is of course indicator of preferential transfer of energy from the 
transmitter to the receiver. The fact that this happens at a given frequency 
indicates the presence of a resonance, which in facts is verified instrumentally 



with other methods, as mentioned below.  If we increase the power of RF 
generator, the range of LED lighting widens as one would expect under the 
assumption of resonance. 

The most important question is: which way energy is transmitted from the 
transmitter to the receiver?  Two hypotheses can be proposed. The first one 
assumes that some sort of electromagnetic process is conveying the energy in 
the space between the spherical antennas. The features of such process are to be 
identified. Obviously, the usual capacitive coupling must be ruled out in this 
case, since this phenomenon, as mentioned below, is observed at large distances 
between the emitting and receiving antennas. In this sense, the radiating antenna 
is used as an energy source, and the receive antenna as an energy sink. But we 
cannot ignore, as a second hypothesis, that energy transfer can occur through the 
ground cable. We will carefully examine each of the assumptions made. 

Phenomenon 3: At about the same frequency, or at least in a small range 
almost coincident, the Tx LED will turn off (or fade if the RF generator power is 
too high).  

This effect is less intuitive. By use of instruments, we saw that the 
weakening of the signal on the transmitter LED is determined by the fact that the 
impedance seen at the transmitter primary - which is obviously a function of 
frequency - has a low value resistive component at the resonance frequency.  

Phenomenon 4: When disconnecting the ground from the receiver, its light 
is extinguished and the transmitter LED goes on again. 

 Under the first of the hypothesis, this "reaction of the receiver on the 
transmitter" can be explained as follows: when disconnecting the receiver from  
ground, its reactance parameters changes and breaks the resonant mode of 
energy transfer between spherical antennas. As a result of sharply reduced level 
of energy absorbed by the receiver (the receiver LED goes off), the energy is no 
longer transferred from RF generator to the Tx, due to impedance mismatch; as 
a consequence more energy is available for the Tx LED (transmitter LED lights 
up). 

The second hypothesis explains this phenomenon as the cessation of 
transmission of energy through the ground cable from its attachment to the 
receiver. For the same reason as above, the Tx LED have more energy again, 
and it lights up.  

Phenomenon 5. Between the two spheres is inserted a grounded metal 
screen  cm4030 . No significant attenuation of the received signal has been 
detected at both resonant frequencies. There is only a slight shift of the 
resonance frequencies. 

 If we assume that energy transfer occurs through a process between 
spherical wave antennas, it is necessary to conclude that it has properties 
different from properties of  Hertzian waves. Again, this behaviour is 
compatible with the hypothesis  of the signal transmission through the ground 
cable. 



The experiments described above is not sufficient to unambiguously 
interpret the observed phenomena, and therefore have been produced additional 
experimental studies. 

 

4. Additional experiments 

4.1 Frequency response of the system  
The availability of suitable laboratory equipment has allowed a detailed 

study of the global behaviour of the system in a frequencies range of 0-30MHz. 
For analogy with Meyl original resonance frequencies, in subsequent analysis 
we will refer to as 01f  and 02f  for the first and second resonance frequencies 
respectively, though the values will be somewhat different.  

We used a Vector Network Analyzer (VNA) Agilent HP8753B and, 
equivalently, an Anritsu MS2026C, depending on laboratory availability.  

 
 

 
 

Fig. 5 

 
The instrument was set in S21 mode, to display the frequency response of 

transmission from port 1 to port 2, and was calibrated. Port 1 of the VNA was 
then  connected to the transmitter, and the output of the receiver was connected 
to port 2 of  VNA (Fig.5). The transmission (from input to output) is 
characterized by the dimensionless (in decibels) S21 parameter, defined as: 
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where B2 is the power wave outgoing from Port 2 and A1 is the power wave 
incoming in Port 1. 

The input reflection parameter, S11 is defined as: 
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where B1 is the power wave reflected back from Port 1 and A1 is the power wave 
incoming to Port 1. 
 
 

      
 

Fig. 6 

In the analysis of transmission amplitude-frequency characteristics, two 
resonances  are visible (Fig. 6): 
 • the first at frequency  dBSMHzf 2,352,8 2101     
 • the second at frequency   dBSMHzf 9,227,11 2102  . 

Since, as mentioned, the black curve  11S   describes (in decibels) the ratio 
of the power reflected back to the instrument’s generator, over the forward 
power incident on the device input, a low value indicates low reflected power, 
therefore  much power transmitted to the device. As a consequence, this 
indirectly describes the current in the indicator circuit of the transmitter. It can 



be seen, as expected, that each resonance minimum 11S also corresponds to the 
of the maximum energy released in the load receiver, as shown by trace 21S . 

 The peak value of the received signal at a frequency 01f  is lower than the 
one at frequency 02f . This is consistent with the fact that Meyl notes: "By 
lowering the frequency of the signal indicator lights up the receiver again, but 
with less intensity." 

 

 
 

Fig. 7 
 
The following experiment was performed with the transmitter only (the 

receiver being totally disconnected); we investigated the  input reflection 
parameter, S11 versus frequency of the transmitter alone in the frequency range 
from 0 to 60 MHz. As visible in Fig. 7, three resonance peaks are present, at 
frequencies:   MHzf 91

01    dBS 77,711  ,   MHzf 301
02   dBS 86,111     and 

  MHzf 6,451
03    dBS 52,211  . 

  Obviously, comparing with the full system S11 behaviour (Fig. 6), the third 
peak is outside the frequency range and therefore not visible. In addition, we 
note that in an experiment with a solitary transmitter first resonance peak has 
shifted slightly, and the second resonant frequency is substantially increased. 
This means that the presence of the receiving system has a strong influence on 
the electromagnetic parameters of the process at a frequency of second 



resonance peak. This again points to the distinguishing features between the 
electromagnetic processes occurring at different frequencies. It is also needed to 
explain the cause of resonance at the three frequencies where peaks occur. 

 

4.2  Phase relationships at resonances 
For this test, the complete system (transmitter and receiver) has been 

operated at a fixed frequency. Two probes of the oscilloscope (yellow and green 
lines in Fig.8a and Fig.8b) were placed at short distance (3-4cm) from the 
spheres, to sense the electric field. The third probe (blue trace) was close to the 
“ground” wire. 

At MHzf 52,801   (Fig.8a) signals on the transmitting and receiving 
antennas differ in phase by 180 degrees. The signal on the “ground” wire has an 
intermediate phase. Note its very low level. 
 

 
A 

At MHz,f 271102    signals on both antennas have the same phase (Fig. 8b). 
The signal in the “ground” wire is in counter-phase, and its level is very high. 

All this confirms that the electromagnetic process at each resonant 
frequency has its own distinctive features. 
 

4.3 Interpretation of the behaviour at the resonances 
The above results are consistent with the model of the wire dipole antenna. 

For the resonance at MHzf 52,801  , in a dipole antenna with size equal to half the 
wavelength, (without any extra inductance and capacitance) the canonical 
voltage distribution is the one shown in Fig.9a. 

In the presence of capacitive elements at the ends (Top loaded antenna 
dipole or Hertzian dipole), the geometric length of the dipole is reduced for  the 
same resonance (Fig.9b). By adding an inductive load (Fig.9c) the geometric 
length of a dipole at the same resonance, is further reduced. From this diagram 
we see that: 

Fig. 8a Fig. 8b 



 on the inductor, there is a jump of the charge (as well as potential); 
  the terminal points of the dipole have potentials of opposite sign: they 

oscillate in opposite phase, as in the experimental waveform in Fig. 8a; 
 the voltage in the middle point is theoretically zero (undefined phase, 

then), in good agreement with observed very low voltage on the “ground 
wire” (waveform of Fig. 8a, purple trace). Since the magnitude is 
nominally zero, the phase is unimportant here. 

 

 

We now consider the next resonance frequency (second overtone, 
MHz,f 271102  ). A common  / 2 dipole would have the voltage distribution of  

Fig.10a. The capacitive load at the ends (Top loaded antenna dipole or Hertzian 
dipole) shortens the geometric length the dipole at the same resonance as shown 
in Fig.10b. The same considerations already mentioned apply. When adding an 
inductive load (Fig.10c), the geometric length of the dipole for the same 
resonance is further reduced. From this diagram we see that: 

 on the inductor, there is the  jump of the charge, as above, which leads to 
considerable increase of the voltage; 

Fig. 9 



  the ends of the dipole have the same potential, therefore they oscillate in-
phase (in agreement with Fig.8b, yellow and green traces); 

  in the middle point  the potential is very high and is in antiphase with 
respect to end potentials (as experimentally observed: Fig.8b, purple 
trace). 

 
 

 
 

Fig. 10 

 

4.4 Upper resonances in the individual Tesla Coil 
An attempt has been made to visualize the resonances of the basic Tesla 

Coil (solitary transmitter) on a wider frequency range: 0 to 300MHz.  
In order to avoid spurious resonances from the feeding cable itself, three 

EMI-type (dissipative) ferrite toroid cores have been inserted on the cable.  



 

 
 
 

Fig. 11 
 

 

                
       

  Fig. 12 

The frequency response of energy absorption (Fig. 11) shows that the main 
resonance occurs near 160 MHz and has three peaks at frequencies 

MHzf 7,1411   [Marker 1], MHzf 5,1612   [Marker 2], and MHzf 8,1793   
МК3 



[Marker  3]. The observed initial response in the short wave  is obviously not the 
main, the waveform shown on the left it shows the first peak. 

4.5 Transmission loss versus distance 
This series of tests studied the trend in the attenuation of the signal versus 

the distance between the transmitter and receiver. The transmitter and receiver 
were placed on wooden pedestals. They could be moved in the corridor of the 
building. The VNA analyzer was placed near the receiver. A 20-meter long 
coaxial cable (RG213, 50 Ohm) has been used to connect the VNA output to the 
transmitter. The “ground wire” had a length of 20 m too. Both cables length 
were not changed during the experiment3. 

 
4.5.1 Test at a distance 1 m 

At 1-meter antennas distance the resonance peaks shifted somewhat 
compared with the previous bench tests, in which the distance between the 
antennas was less than 50 cm. As expected, the ground wire length of 20 m, 
extending from the transmitter to the analyzer, affects the resonant frequency, 
reducing it: ,7,8,9,7 0201 MHzfMHzf   .8,1003 MHzf   Attenuation at 
this frequency MHzf 7,802   is approximately .8,321 dBS   
 

4.5.2 Test at a distance 4 m 
Losses at resonance МHzf 7,802  of slightly increased: dBS 4,421   (Fig.13). 

 
Fig.13 

 

                                                             
3 Note that, with respect to theoretical analysis (section 5.6 below)  the resistance R would increase only with 

additional cable added; the resistance R remains unchanged. The obvious result is the relation:   RR  

 



It was observed that the frequency response significantly depends on the 
position of the grounding cable. Two tracks on the oscilloscope screen are 
examples of two different provisions of the grounding cable. The only 
unchanged point is the one corresponding to frequency 8.7MHz. An explanation 
of this fact is given in the theoretical analysis section below. 

 

4.5.3 Test at a distance 15 m 
The degree of attenuation at the resonant frequency MHzf 7,802   (marker 

1) remains unchanged: dBS 4,421  . At off-resonance frequencies, on the 
contrary, there are significant attenuations of the signal  (Fig.14). (Note: vertical 
scale is 5dB per division). The second trace (memorized) is the previous test, for 
comparison. 
 

 
 

Fig. 14 

 

4.5.4 Test at a distance 18 m (Through concrete wall) 
In this test the line of sight was blocked by a concrete wall (Fig.15). 

Compared with the previous test, no difference has been observed: the resonance 
frequency  MHzf 7,802   the path loss remains the same: dBS 4,421  . 
 



 
 

Fig. 15 

The observed dependence of the attenuation at МHzf 7,802   versus distance is 
summarized in the table below: 
 

Distance [m] Path loss  [dB] 
1 -3.8 
4 -4.4 
15 -4.4 
18 -4.4 

 
At a distance of over 4m energy of the transmitted signal at a 

frequency MHzf 7,802    is stabilized. Such a decay law of the received signal as 
a function of the distance between the transmitter and the receiver is anomalous.  

As noted above, in the experiments on signal transmission between the 
spherical antenna done by C. Monstein and J. P. Wesley [4], the transmitted 
signal faded as the square of the distance from the radiation source. Such 
dependence is a normal distribution with a spherical electromagnetic wave. 

 In contrast to C. Monstein and J. P. Wesley set-up, here the Tesla and K. 
Meyl antenna contain spiral coil. Perhaps the anomalous decay law of the signal 
energy due to processes occurring in the Tesla transformer. This phenomenon 
requires further study. 
 

4.6 Transmission through a Faraday Cage 
In the analysis of the observed phenomena it has been repeatedly raised the 

question: is the energy transmitted from the transmitter to the receiver solely on 
ground conductor? In other words: is there a signal (energy) transmission path 
directly between the spherical antennas by electromagnetic waves? And what 



are the properties of these waves? It has been therefore tried to analyze this 
phenomenon more accurately using a professional Faraday cage (Fig.16). 

 

The transmitter was placed in the Faraday cage, mounted on a wooden table, and 
it was fed from the outside (VNA, port 1) by a coaxial cable through the cage 
connectors panel. 

 

    
 

Fig. 17 

The receiver was placed outside the cage on a wooden pedestal. The 
received signal was fed to the VNA analyzer port 2 (Fig.17). 

 

4.6.1 Case1: ground cable is insulated 
In the first test the ground wire from the transmitter was brought outside 

the cage through a small insulated hole in the metal wall (Fig. 18). The hole was 
about 8 mm in diameter, that is much smaller than  the wavelength, so it should 
not affect the shielding of radiated signals.  
 

Fig. 16 



 
 

Fig. 18 

 
 

 
 

Fig. 19 

The cage door was first kept open, the transmitter and receiver being in the 
line of sight. Then, under the same conditions above the chamber door was 
closed. 

 Surprisingly, no difference was found: in Fig. 19  the two curves (with the 
door open and door closed) are identical, perfectly overlaying. 
 



4.6.2 Case2: ground wires  connected to the Faraday cage 
The experiment was repeated with the same configuration as above, but the 

ground wire of the transmitter was electrically connected to the inner side of the 
cage metal wall, and the ground wire of receiver to the outer side of the cage 
metal wall (Fig. 20).  

 
 

 
Fig. 20 

Under these conditions, as before, there should be no obstacle on the 
ground conductor for a signal transmission from the transmitter to the receiver. 
However, in this case, the attenuation of the signal was found very high (high 
shielding effectiveness). 
 

5.Theoretical analysis 
 
 To better understand the phenomena  observed in the above experiments, it 

is necessary:   
• to investigate the electromagnetic processes that take place between the 

transmitter and the receiver and find out their features; 
 • explore the possibility of transmission of the signal (energy) over great 

distances.  
• to find out a theoretical model able to describe the resonances observed; 
 
 From the standpoint of the modern theory of electromagnetic waves, the 

results of the experiments described above seem quite paradoxical. The 



observed phenomena are obviously beyond the traditional concepts of the 
electromagnetic process. Hereafter we will refer to the generalized (four-) 
electrodynamics [7-9], which, as we will see, covers a wider range of 
phenomena. 
 

5.1  The wave equations 
In the macroscopic description, the theory of electrodynamic processes 

reduces to the well-known wave equations for the four-dimension vector-
potential  ,A :  
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

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,                                           (1) 
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where and     are respectively the dielectric permittivity and magnetic 
permeability, j and    are the current density and charge density.  

Introducing the four-dimensional space-time, 
 

ictxzxyxxx  4321 ,,,  
 
we can write the corresponding components of the vector potential as 
 

,,,, 4321 icAAA zyx   
 
and the four-wave equation that combines (1) and (2): 
 

                                                                                                            (3) 
 
Here  - is  the invariant d'Alembert operator, and it is used a four-component 
current density vector: 
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Let us consider the resulting four-dimensional divergence of the vector-
potential: 
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Typically, from mathematical considerations, this expression is assumed to be  
equal to zero, that is, it is apply the Lorentz condition. Disadvantages of this 

 4,3,2,1,    s .     



approach are shown in the studies [7-9]: it is proposed to abandon the terms of 
Coulomb and Lorentz and assume the relationship: 
 

 
t

divtzyxB




A,,,* ,                                        (5) 

where  tzyxB ,,,*  is  a scalar function that characterizes an additional 
component of the magnetic field.  In the stationary case: 
 

  AdivzyxB ,,* .                                                (6) 
 

In the publications [7-9] it is theoretically and experimentally shown that 
the potential (scalar) component B* of the magnetic field has a full physical 
meaning. Also discussed are the conditions under which there is a potential 
magnetic field. It is shown that the electric current in presence of an external 
potential magnetic field,  experiences a force directed along the current or 
against it, depending on the sign of function  zyxB ,,* . In said publications  the 
irrotational law of electromagnetic induction is theoretically and experimentally 
substantiated: it is shown that in a conductor placed in a time-dependent 
potential magnetic field it is induced an electric field potential. 

It follows that, for a complete description of the magnetic field it is 
required to use the four-vector   *, BB , which reflects its potential-vortex 
character. Thus, failure of  Coulomb calibration, allows to consider both 
potential and vortex components of the vector  A . This implies a generalized 
field theory. We formulate the fundamental theorem of Helmholtz (Stokes) [12] 
applied to the vector A : if the divergence and the curl of the field, vanishing at 
infinity, is defined at each point  r in a certain region, then everywhere in this 
region the vector A  field can be uniquely represented as the sum of potential 
and solenoidal fields: 

  AAA . 

 5.2 Electrodynamic properties of the vector potential 
Usually the Helmholtz theorem is not directly applied to the vector 

magnetic potential A , because the latter  is considered just a support function 
and it is not uniquely determined. Let us examine the properties of the vector A . 
In classical electrodynamics are used the following equations: 

 

,AВ rot      .grad
t






AE                                    (7) 

 
and typically it is used the following gauge transformation: 

 



grad AA ,     
t




 ,                                   (8) 

 
where   - is an arbitrary scalar coordinate-time function. The characteristics  of 
the vortex magnetic field,  DE , and   HB ,  of the induced electric fields, are 
invariant under the transformation (8). On this basis it is concluded the gauge 
invariance of the electromagnetic field. This is the basis for the introduction of 
the Coulomb gauge and Lorentz condition. No physical meaning to the 
transformation (8), is usually, not given. 

Let us try to explain physical meaning of gradient transformation.  Note 
that by adding grad  to the vector potential, its potential part changes. 
Potential part of a vector field changing without vortex component’s changing is 
possible only in the transition from conventional fixed reference frame К to a 
steadily moving reference frame К  . But in this case, obviously, potential part 
of the electric field in the direction of the reference system must change. In 
moving reference frame the electric field of a point charge is not spherically 
symmetric, but appears Heaviside ellipsoid [13]. To compensate this change 

(“deformation”), an additive 
t


 with a minus sign is introduced to the second 

correlation.  Does the scalar potential   really change at the transition from K 
to К? It is known [13] that the charge is relative invariant value. Scalar 
potential   depends on the location of the point of its definition and the 
magnitude of the charge, therefore, there is reason to consider it in all reference 
frames the same (at К speeds much smaller than the speed of light). 
"Deformation" of the electric field in the transition to the mobile reference 
system is fully taken into account by vector potential А . That is, there is no 
need to introduce a second correlation (8), it has no physical meaning. To 
describe the transformation of the electric field in the transition between K and 
К (gradient transformation) only the first relation (8) is necessary. 

There are two types of transformations of the vector field А: gradient and 
vortex.  Gradient transformation, as has been shown above, corresponds to the 
transition between progressively moving reference frames (one of them can be 
considered relatively immobile).  When vortex transform, corresponds to a 
transition from progressively moving (or conditionally stationary) reference 
frame К to the rotating К. 

It can be shown rigorously [7] that  upon  gradient transformation the 
potential characteristics of the electromagnetic field ( A , and, consequently, Е  

and *В )  will change, while vortex characteristics ( A ,and, consequently Е  
and В )  are invariants.  Upon vortex transformation, on the contrary, vortex 
components of the electromagnetic field do change, and potential ones are 
invariants.  This corresponds to the relative nature (depending on the choice of 
the reference frame) of the magnetic field and its basic characteristics - 



vector А : in other words, the correlation of solenoidal and potential components 
of the electrodynamic vector А  depends on the choice of the reference system, 
but in the selected reference frame is uniquely determined.  Information 
contained in brackets in the Stokes-Helmholtz theorem, merely reflects the 
relative character of motion (rest) of any reference system. In selected arbitrarily 
fixed reference frame it is convenient this vector constant equal to zero. In this 
approach, the ambiguity of the choice of potentials А  and   disappears, and 
there is no need to introduce gauge conditions.  A theory formed on this 
platform will be called generalized electrodynamics. 
 

5.3 Modified (generalized) Maxwell's equations 
From  wave equations (1) and (2) with the relations (5) and (7) we can 

easily obtain the generalized equation of electrodynamics (Maxwell's modified 
equations) [7-9]: 

t
gradHrot





DjH *

,                                            (9) 

t
Bdiv

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*

0D
.                                            (10) 

 
This approach does not allow to exclude from these equations the potential 

(scalar) component of the magnetic field, which is described by two interrelated 
scalar functions: 

.** HB                                                            (11) 
 

To denote the components of the magnetic field will use  hereafter the term 
"scalar magnetic field" (SMF). 
 The equations of the generalized electrodynamics (9) - (10) take account of two 

non-stationary process: bias current 
t

D     and 
t

B



*

0   , which can be called 

"Charge-shift". The presence of a charge-shift due to the phenomenon of 
irrotational electromagnetic induction, has been confirmed experimentally [7]. 
Its essence is that of an unsteady SMF-induced electric field potential. Hence, a 
“quasi charge”. 

 Another two differential equations that complement the generalized 
electrodynamics, are (7):   

t
rot





BE ,                                               (12) 

0Bdiv .                                                  (13) 
 

Equation (12) describes the phenomenon of electromagnetic eddy 
induction. In Maxwell's electrodynamics we consider only the eddy time-
dependent processes. The generalized electrodynamics describes, in addition, 



time-dependent processes that give rise to the potential components of electric 
and magnetic fields. If these transients are created by third-party generators, 
they are the real sources of the electromagnetic field. Instead, in the case of the 
free field at any given point in time should be considered as quasi sources. 

 Equations (9) - (10), (12) - (13) and of their individual functions describe 
electromagnetic phenomena, and for a complete description of the 
electrodynamic processes we must also use the wave equation (1) - (2) and the 
main electrodynamic characteristics, the  4- dimensional vector potential  ,А .   

In papers [7-9], the potential component of the magnetic field was studied 
theoretically and experimentally. A particularly useful formula (14)  allows to 
determine the intensity of the SMF, the created by the current J of  finite length 
(Fig. 21): 
        

           (14) 
 
 
    

 
 
 
 

In Fig. 22 presents the line of the vector potential А  and magnetic field 
vector H and scalar magnetic field *H created by a straight current segment of 
finite length.  
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Based on the results of studies [7-9], we can formulate the rule: looking 

from the midpoint of a finite-length current element, towards the direction of 
current flowing in it, it is created a positive SMF ahead, and a negative SMF 
behind. Note that the SMF in its essence is always heterogeneous and spatially 
unrestricted (i.e., it vanishes at infinity). 

5.4 Wave processes 
From equations (1) - (2) using the second relation (7) we can easily obtain 

the wave equation: 




 grad
tt

1
2

2



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
 jEE .                                (15) 

 
Conduction currents can be separated into radial j  and  azimuthally   j  

components. With this in mind, it is now possible to split (15) into two 
independent equations: 

 




 grad
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
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tt 






 


jEE  2

2
.                                         (17) 

 
Similarly, using the first relation (7) from (1) - (2), we obtain the wave 

equation for the vector H : 



 jHH rot

t 2

2
 .                                       (18) 

 
Equations (17) and (18) describe the well-known mechanism of the 

emission of transverse electromagnetic waves. 
 Similarly, transforming (1) - (2) with (6), we obtain the wave equation for 

a scalar function *H : 



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
 jdiv

tt
HH  2

*2
* .                                  (19) 

 
The differential equations (16) and (19) together describe the propagation 

of waves along the irrotational vector Е , so they should be called the 
longitudinal or electroscalar  [10, 15]. 

 It is important to note that, since the vortex and potential components of 
the corresponding fields are mutually independent, equation (16) - (19) are fully 
consistent with the principle of superposition.  The sources generating potential 
and vortex fields are respectively separated. However, there is a question of 
mutual communication between non-closed conduction currents and charges, 



which reflects the condition of continuity. In Maxwell's electrodynamics is used 
as a continuity condition:  

0



jdiv
t
 .                                           (20) 

 
Let's write the differential equation (10) in the form: 
 

.
*

0 t
Bdiv

 D  

After differentiation in time, we get: 
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As a result of the addition (20) and (21), we obtain the more general 

condition of continuity: 
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
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Therefore, current sources can be created without the help of non-stationary 
charges, but by alternating potential magnetic field. In this sense, the usual 
electric charges and their currents become independent from conductance.   

Let us write down the equation of continuity in three particular cases.  
 As a first case, assume an unsteady SMF (variable  not electric charges) is 

present in some point of a conductive medium; then 
 

.02

*2

0 

 jdiv

t
B

 
 

That is, if a given point of an (insulated) conductor is exposed to a transient 

SMF 










 02

*2

t
B , then a current transient occurs. This phenomenon can be used 

for receiving signals transmitted by electroscalar waves.   
 As a second case, a dielectric body is exposed to a transient SMF.  The 

continuity equation is in the form (21). That is, in the absence of a conductive 
environment, only bias current occurs. 

 As a third case, let us consider conducting and non-conducting regions 
exposed to the SMF; the continuity equation is: 
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This is the case in a spiral coil: conductive and dielectric sites are radially 
alternated. 

In conclusion, from the all above considerations it can be affirmed that the 
state and evolution of the electromagnetic field in a macroscopic approximation 
to the selected coordinate system is uniquely described by the four-dimensional 
vector  ,А , including the potential and solenoidal components and satisfies 
the four-dimensional d'Alembert equation. If we separate the potential and 
vortex part of the vector А  in (1) - (2), then seven independent scalar differential 
equations containing seven mutually independent variables are obtained. All 
other characteristics of the electromagnetic field (intensity, induction) are 
secondary, they are uniquely expressed through the potential  ,А . 

A very similar position expressed in his article, K. J. van Vlaenderen [10]. 
The author of this article also pointed out the gauge conditions, as reasons for 
the limited and electrodynamic theory was modified equations, which coincide 
with (9) - (10) (12) - (13). However, he did not use the continuity equation in 
general form (21) and did not abandon gauge invariance in its traditional 
interpretation. This piecemeal approach has inherent contradictions. Therefore, 
Bruhn G. W. [16] expressed doubts about the validity of the theory, developed 
by K. J. van Vlaenderen. 

 Higher generalization of electrodynamics can be done at a quantum level,  
using two four-vector. Generalized equations of quantum electrodynamics led 
Hvorostenko N.P. [6], their analysis is contained in [7]. A similar result with 
regard to quantum processes was obtained by Dale A. Woodside [11]. 
 

5.5 The mechanism of radiation and propagation of the electroscalar 
waves  

Let us try to clarify the mechanism of electroscalar   waves radiation from 
ball shaped antennas. Equation (19) states that, due to changes in electric charge, 
an unsteady SMF  crtzyxH ,,,*   is generated.   

Vector grad  is directed radially in the area. In accordance with (16), it is 
formed around the sphere the radial electric field  crtzyx  ,,,E . Thus, the as 
an effect of a variable electric charge, it is generated an electroscalar  wave, 
which is determined by the vector  crtzyx  ,,,E and scalar 
function  crtzyxH ,,,*

. 
A previous experiment confirming the above theoretical considerations is 

described in the article [4], by the German researchers C. Monstein and J. P. 
Wesley. In said experiment ball antennas installed at a distance of 10 to 1000 m 
were used. The emitting antenna created a variable electric charge, and the 
receiving antenna could receive the signal those level was found to be 
proportional to the square of the distance from the radiation source. 

 Let us consider the propagation of electromagnetic waves in a fixed 
homogeneous dielectric medium, without charges: 



00   ,,const,const . 
Equations (9), (10), (13) in this case takes the form: 
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Equation (23) implies two independent equations: 
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gradH
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0
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That is, time-varying electric field generates eddy vortex magnetic field. A 

time-varying electric field generates a potential SMF. Consequently, these 
processes in the absence of conduction currents can be conventionally separated. 

 We differentiate (26) with respect to time: 
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Using equation (24), we obtain: 
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arriving at the homogeneous D'Alembert equation for the vortex vector E : 
 

02

2

00 

 

 t
EE  .                                    (28) 

 
Similarly, considering simultaneously the equations (27) and (25), we 

obtain the wave equation for the vector potential E : 
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Differentiating  (24) with respect to time: 
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In view of (26), we obtain the equation for the vector of the d'Alembert H : 
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By a similar transformation equations (25) and (27) we arrive to the wave 

equation for a scalar function *H : 
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Thus, the whole picture of an electromagnetic wave is constituted by the 

two components: one of them is determined by the vortex vectors  E  and H , 
and other by  a potential vector E and a scalar function *H . 

 We note that the propagation velocity of longitudinal and transverse 
electromagnetic waves are the same: 
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cVV
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where 
00

1


c  is the speed of light in vacuum. This expresses the 

inextricable connection between all components of the electromagnetic process 
and the inability to complete their positional separation in general. Moreover, 
the transverse electromagnetic waves propagating in a material medium, in 
every point in space generate longitudinal waves and vice versa. 
 

5.6 Electromagnetic processes in the Tesla coil 

5.6.1 Vortex and potential processes 
First of all, we notice that in the original Tesla experiment, and 

consequently in the  Meyl  device, there is a fundamental difference from a 
normal radio component: in facts, the conventional transformers are usually 
based on solenoid coils, while  Tesla adopts spiral coils. In a conventional 
transformer the electromagnetic induction phenomenon is based on the vortex, 
that is a mutual transformation of the vortex magnetic field. In a such 
transformer windings currents have circular (eddy) flow.  
 



 

 
Fig. 23 

 
Instead, Tesla transformer is designed so that there are two co-planar 

current components: the tangential (swirl) j  and radial (irrotational) j  (Fig. 
23a): 

  jjj . 
 
Consequently, the electric field in the coil can be represented as a superposition 
of a vortex (solenoidal) component and a potential (irrotational) component: 
 

.  EEE  
 

When describing the processes occurring in a helical coil, equation (9)  can be 
split into two partial differential equations: 
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gradH
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Equation (33) describes an electromagnetic vortex process, while equation 

(34) describes an irrotational electromagnetic process. The time-derivative terms 
in the right parts of the above equations obviously vanish when the involved 
processes are stationary; in quasi-stationary (e.g. low frequency) cases, such 
time derivative terms can be neglected, with respect to current components j  
and j respectively. From Fig.23a  it is apparent that a geometric correlation 
between the current components magnitudes depending on the design of spiral 
coil (angle  ); the related electric field components consequently has the same 
relationship:  
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Hence, equation (33), (34) in stationary and quasi-stationary case are 
usually linked by the ratio (35).  

In non stationary case, when considering the electromagnetic process 
unfolding along the conductors of the coil, the current conductance j  is usually 

strong, thus in equation (33) the Eddy displacement current 
t

 D  can be 

neglected.  Moreover, the angle   in spirals is usually small, therefore 
  jj .  This suggests that in equation (34) the currents conductivity j  can 

be small enough to be neglected compared to current offset 
t

 D . The latter 

term, obviously, gets more and more important as the involved frequency 
increases, as the time derivative increases accordingly. Thus, equation (33) and 
(34) are simplified as: 

, jHrot       (36) 
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These differential equations are independent: the two electromagnetic process 
(Vortex and potential) in Tesla coil can be treated separately.  In Fig 23b the 

tangential  j  and radial 







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t
D components of the current in the coil Tesla are 

depicted separately at a specific time instant.  
 

5.6.2 The transformation mechanism 
In the complete Tesla transformer with two spiral coils, two phenomena are 

occurring simultaneously: vortical electromagnetic induction and irrotational 
electromagnetic induction.  

The vortical electromagnetic induction, as we know, results in the 
transformation of the Eddy currents. That is, in the secondary coil a conduction 
currents  tj  is developed.  

Through irrotational electromagnetic induction a transformation of radial 
currents occurs. The radial conduction currents  tj  in the primary coil, are 

transformed in the radial displacement currents 
t

 D , that arise in the secondary 

coil.   



Let us try to describe this process in more detail. A radial conduction 
current  tj  in the primary coil creates a SMF gradient, according to equation 
(10). This gradient is parallel to the   tj  current, so it is radial as well. 
Assuming the above currents, and thus SMF, are time dependent, in the Tesla 
coil secondary a radial induction is obtained, according the equation (21) due to 
changes in the SMF. This should be thought of as the motion of the 

displacement charge (quasi charge) 
t

B



*

0
 

in the radial direction. Such 

currents can be called "displacement currents of the second type" in contrast to 

Maxwell's displacement current 
t

 D , which is obtained from Eddy current. 

Note that the displacement currents are transferred  in the absence of an 
electrically conducting medium. Therefore, the isolation between the turns of the 

coil does not preclude the current 
t

 D
. 

Radial displacement current leads to the separation of electric quasi-charges 
in the radial direction,  between the centre and the periphery of the secondary 
coil, so that  there is the gradient potential. The spherical radiating antenna 
connected to the centre of the coil, is then subjected to an unsteady electric 
potential. In turn, this creates a strong electric field around the spherical antenna. 
Such electric field is non-stationary, and has a radial structure characterized by a 
vector  crtzyx  ,,,E .    

Let us consider a simplified model describing the mechanism of 
transformation of radial currents, as depicted in Fig. 24a. Consider two sections 
of the conductor, located on the same line. The left element models the radial 
current flowing in the primary coil, and the right element represents the one in 
the secondary coil.  
 

 
Fig. 24 

 
Let the primary current varies as: 
 
                                             tsin011 jj  .                                                  (38) 



 
As already described above in  Fig. 22 and the accompanying analysis,  in 

the space between the two aligned conductors the  current 1j  creates a time 
varying SMF (Fig. 24a) that can written as: 
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Therefore, in this area will arises a transient effective charge: 
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In accordance with the continuity equation (21) in this region there is a current 
source: 
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In the right conductor  is developed the current of conduction: 
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Thus, in the secondary coil a new current 2j , flowing in phase with the 
primary current 1j   is induced (Fig. 24b). With these considerations we have 
neglected the time delay, assuming that the conductors are located at a distance 
much smaller than the length of the corresponding wave. 

In the first conductor, of course, there is a backflow (an analogue of the 
Lenz rules). Therefore, the primary current is somewhat weakened, and its 
energy reduced. It can be said  that in this process energy is transferred from the 
primary to the secondary. This phenomenon explains the mechanism of 
separation of charges in a spiral coil.  

Let's write the laws for the Vortex and an irrotational processes. For the 
vortex process,  as widely known: 

 

.
dt

dJLU 
 

     
                                            (42) 

 
To derive a similar formula, which describes the irrotational 

electromagnetic process we use equation (10) written in the form: 

t
Bdiv



*

0D . 

 



As a result of integration with respect to the scope and application of the 
Gauss theorem, we determine the effective charge (the charge of bias) induced 
in the volume  : 

 




 d
t

Bqэф

*

0 .                                                        (43)
 

 
In the case of a flat coil, drrbd   2 where b - the diameter of the cable 

conductor (height coil). Hereafter, for simplicity, we’ll consider 1 . 
 According to equation (37) SMF in our case generates a radial 

displacement currents. We write (37) in cylindrical coordinates: 
 

   ,,,*

trj
r

trH dis





                here
          

  .,
t

Dtrj dis




 
  

 
Suppose that in all the turns of the coil, at a given time, the radial current has the 
same direction. This corresponds to the G. Wheeler approximation [14]. 
Displacement current density in this case varies depending on the radius with the 
law: 
 

   tRj
r

Rtrj disdis ,, 0
0

  . 

 
Where 0R  is the coil radius at periphery. 
From this relation, we obtain by integration: 
 

   tRjrRtrH dis ,ln, 00
*

 , 
or  

   tRjrRtrB dis ,ln, 000
*

  .                                    (44) 
 

Substituting (44) into (43), determined by the charge displacement occurs 
on the periphery of the coil (the same charge is formed on the inner coil of the 
coil): 

 
dt

tRdJdrrrq
disR

r
эф

,ln 0
00

0

0

   . 

 
 In the above integration we have noted that the radial force of the bias 

current at the periphery of the coil is: 
 

  bRtRjJ disdis
00 2,    . 

 
 Thus, the spiral coil behaves as an analog of a cylindrical capacitor: in 

facts, as depicted in the following figure, radial bias current leads to charge 



separation bias disq  (Fig. 25). These charges create an electric field that seek to 
reduce the bias current. This is the physical essence of irrotational 
electromagnetic induction. 
 
                                          
 

                                    
 
 
 
 
 
 
 
 
 

 
 
                                                          Fig. 25 
 

Thus, the spiral coil is an analog of a cylindrical capacitor: 
 

0

0

0

ln

2

r
R

bC 
 . 

 
Since  UCqef , we obtain an analogue of the law (42): 
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dt
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r
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b
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That is 

dt
dJLU

dis


  ,      where     

0

0

lnln
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00
R

r

drrr
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R
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L


 .           (46) 

 
Note that the integral in the last expression is negative, so in the law "-" 

sign is not explicit. Thus, Lenz rule applies in the case of irrotational 
electromagnetic induction too. The essence of the phenomenon of irrotational 
electromagnetic induction is that, due to the induced charge displacement, it is 
created  an EMF that opposes the radial displacement current. Thus, it is a 
reactance, which depends on the capacitive properties of the spiral coil. 
Formally, however, it should be attributed an impedance of the inductive type, 
since the phase voltage is 2  ahead of current bias.  
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Equations (42) and (46) show that the inductive properties of a helical coil 
are characterized by two different factors: L   and  L . Obviously, there are 
two types of inductive reactances:  

 
circular        LX L           and   radial           LX L                  (47) 

 
Let us establish the phase relations between the vortex and the irrotational 

processes. The components of the current flowing in the primary coil have the 
same phase, for example: 

  tjj sin0
  ,     tjj sin0

  . 
 

The irrotational electric field induced in the secondary coil is determined by the 
differential equation (16), which should be written as: 
 

.2

2

tt 






 


jEE 
 

 
Due to time differentiation, the phase of the vector E  (and, hence, D ) is 

2 shifted with respect to j  : 
  tDD cos0
  . 

 
Consequently, irrotational displacement current varies with time according to 
the law: 

  tD
t

D  sin0


 

 , 

 
that is –due to further time differentiation- it is in antiphase with respect to the 
original current flowing in the primary coil. 

 The equations (47) above express the magnitude of the inductive 
impedances , and has been written  neglecting to their phases. Reactances in the 
tangential and radial directions should now be written taking into account the 
phase relations in the vortex and the irrotational processes, and the capacitive 
reactance of the ball antenna: 
 

C
LX


 1

 
,        C

LX


 1
 

                                  (48)  
 

The currents and voltages are individually represented on the vector 
diagrams (Fig. 26a and 26b). We first draw (Fig. 25b) the  j  current in the 
secondary coil: we set this vector as reference, with zero phase. As a 

consequence (Fig. 25a) we draw 
t

 D
 current vector pointing towards left, 



since it is in anti-phase, as explained above. As known, the voltage developed 
across an inductor is 2 in lag with respect to the current. Thus )(oLU  and 

)(LU  vectors are oriented as shown in Fig.26b and Fig.26a respectively. Also, 
the voltage CU

 
across the capacitor  has always 2  lag on the phase of the 

relevant current. The resulting voltages are thus opposite in the two cases vortex 
(Fig.26a) and irrotational (Fig.26a). When one process prevails on the other one, 
e.g. in resonances, the relevant voltage vector is predominant. Otherwise, the 
two CU vectors will merge, subtracting each other. 

 
Fig. 26                    

We can figure out a simplified circuit as depicted in Fig.27.  
 

 

 
Fig.27 



In this simplified model currents  j and  
t

 D
 flow in two separate, 

parallel branches. When operating at a frequency 01f  the current j  goes on the 

right arm, because its reactance X  decreases sharply 





  C

L


 1 . The 

equivalent circuit is presented in Fig.27a. At a frequency 02f  instead, the right 
arm is virtually opened, and reactance left branch X  is minimal (Fig.27b). 

The equivalent circuit when operating at a frequency of 03f  is shown in 
Fig.27c. As the inductive elements with coefficients L  and L  are connected 
in parallel, the total inductance is given by the formula: 

 








LL
LLL  

 
In the wire connecting the spherical antenna the current is a superposition 

of j  and  
t

 D . Taking into account the phase relations of the resulting current 

is the Tesla coil is represented as a difference of eddy current conductivity and 
the radial displacement current: 

 

t
Djj



 
 . 

 
In forming the third resonance peak at the estimated frequency of 

МHzf 1503   a partial cancellation of the two opposite signals. On frequency 
response shown in Fig. 19 the all three peaks are visible. In other cases it may 
happen that the two signals cancel each other completely, and the third peak is 
not observed. 

However, the circuit shown in Fig. 27, does not fully simulate the processes 
occurring in the coil of the Tesla. The first difference is that in this diagram in 
both branches flow currents of electrical conduction: we should not forget that 
one of them simulates the displacement current. 

 The second difference is that during the real experiment with the diagram 
shown in Fig. 27, the switch simulate two resonances separately. The merge of 
the parameters, giving the third resonance, cannot be modeled by it. 

 In the actual Tesla coil the three behaviours takes place automatically, 
depending on frequency. Therefore, the S11 frequency response shows the three 
peaks. 

 

5.7 The role of  Inductances in the resonance frequencies 
In the laboratory test we have first explored frequency intervals in the HF 

(f<30MHz) range, due to the fact that the original Meyl experiment were in this 



range. Here the resistive losses in the coils are more or less negligible, and the 
results of instrumental investigation are quite satisfactory. Also, some parts of 
the system can be considered lumped. Above 30MHz (VHF) the losses are very 
high, and stray parameters cannot be neglected. So the results are expected to 
have a fairly high degree of dispersion. 

5.7.1 The range of HF 
According the model mentioned in the previous section, it is possible to 

calculate three resonance frequencies. First, we study the resonance in the HF 
range: 

 

CL
f




12 0101  ,     

CL
f




12 0202  ,    

LC
f 12 0303    .       (49)  

 
At frequency 01  the azimuthal (circular) current j  in a spiral coil 

increases.  At frequency  02  the picture changes significantly. There is a SMF, 
the gradient of which is directed along the radius of the coil. Due to this, the 
reactance in the radial direction is significantly reduced, so the radial current 

t
 D  increases. This leads to the creation of a secondary coil in the centre of a 

strong alternating SMF, therefore, there arises an effective charge (potential) of 
large amplitude. We can say there is a "charge resonance".  

At the third resonance frequency 03  the total current j flowing in the spiral 
coil increases. In this case the minimum is the total reactance of the parallel 
branches of the circuit. 

The conventional, azimuthal inductance  0L  can be calculated using the  
Harold Wheeler-approximation4 [14].  This approximation is valid for the length 
of the wire winding up to half the length of the electromagnetic wave. In this 
case, the direction of the current in all areas of the antenna is changed 
simultaneously.  

With the sizes and parameters used in our coils, the resulting inductance is 
HL 7,44)0(  .  It corresponds to the frequency МHzf 1001  . This value is in 

vicinity of the experimental value: .901 МHzf   The discrepancy can be 
explained by the presence of "stray" capacity, which can be estimated as 2-3 pF. 

For vortical inductance  the current propagates along the whole winding 
wire length, that, in out case, is about 6m. Consequently, only the operating 
frequencies lowest than МHz

WireLength
cf 25

2



  are compliant with the 

Wheeler approximation.  

                                                             
4 An online  calculator for flat spiral coil can be found at the following link: 

www.circuits.dk/calculator_flat_spiral_coil_inductor.htm  



However, for the approximate estimation apply the formula (46), which is 
determined by the irrotational inductive factor )0(

L  approximation H. Wheeler. 
For a given size coils get:   

 
  Гнdrrr
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Sign  "-" corresponds  to the  Lenz law for irrotational electromagnetic 

induction (46).Estimated value of the corresponding resonance frequency: 
 

MHz
CL

f 451
2
1

02 


. 

 
The discrepancy between this and the experimental value  MHzf 3002  is due 
not strict compliance with the conditions of H. Wheeler. 

  
5.7.2 The range of VHF 
Of greatest interest is the theoretical calculation of the basic resonance 

frequencies in VHF range, that is, beyond the approximation H. Wheeler. 
 We make the calculation of the basic resonance frequencies 1f , 2f  and 3f . 

To do that, we have to calculate the inductive factors.  The length of the coil 
wire is about 6 m, and the length of the electromagnetic wave at the fundamental 
resonance frequency is close to 2 m Therefore, the length of the conductor 
corresponds to three traveling waves and creates a complex distribution of 
current density as a function of radius and polar angle  trj ,, . The H. Wheeler 
approach in this case would not be satisfied. But an helical coil can be divided 
into  several  circular sections, each containing less than one half-wave. With 
this segmentation method each section complies with the Wheeler 
approximation. 

 We write the necessary formulas for a n-th section with an inner radius nr  
and an outer radius nR . Let us consider a generic circular alternating current with 
radius r. Such current, flowing through  a conductor with a cross-section ds  
creates, in the center of the coil, a magnetic field (without delay): 

 
 ds
r
tjdB

2


 .                                                (50) 

 
The area element of the radial cross-section of coil is: 
 

drbds   . 
 
 As a result of the integration of (50) we get: 



 

    
n

n
n r

RtbjtB ln
2


  .                                 (51) 

 
 Substituting (51) into the differential equation (12) we get: 

tr
Rbrot

n

n
n 


 jE ln

2
  

 
Now we multiply this equation by the surface area of the annular element 

coil: rdrds 2 . As a result of the integration and application of Stokes 
theorem we have: 

   
dt

dJ
r
RrRU n

n

n
nnn


  ln

2
 ,                            (52) 

 
where  nnn rRbjJ    - the strength of a circular current of the n-th segment. 

 Comparing (52) with the law (42), we find the vortex induction factor for 
the n-th area: 

 
n

n
nnn r

RrRL ln
2



 .                                          (53) 

 
The table below shows a segmentation of the spiral coil used in our 

experiments; the results for each section and the total value of the inductive 
factor are calculated. To explore the inductance value around 150MHz, as found 
in the VHF test (fig.12), the wave lengths involved are in the order of 2m. The 
table below is the result for a segmentation with 6 sections. 

 
 

Segment 
number 

Inner radius  
nr  (mm)  

Outer radius  
nR (mm) 

Number of 
turns 

Number of 
turns 

 inductive 
factor 

nL  H610  
1 5 25 12 0,094 
2 25 35 6 0,039 
3 35 42 4 0,027 
4 42 48,5 4 0,024 
5 48,5 53,5 3 0,019 
6 53,5 58,5 2 0,018 

Sum   31 0,222 
 
 



The sections can be viewed as six virtual coils which are connected in 
series. The resulting inductance is defined by simple summation. Thus, as a 
result of calculations obtained value: 

 
HL 610222,0 

  . 
 
 The estimated value of the first group of VHF resonant frequency is in 

great agreement with the result of the experiment: 
 

MHz
CL

f 1411
2
1

1 


. 

  
Next, we perform a theoretical calculation irrotational inductive factor.  in 

each of the selected segments using the formula (46): 
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2
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
  . 

 
 Note, however, that the frequency of the second resonance peak 

MHzf 5,1612   is less than the half-wave length of 0.925 m and m in our case, 
the coil is 6.5 wavelength long, so, we divide the coil in 7 segments. 

Each segment will represent the charge separation in the radial direction as 
well. In facts, in the radial direction each segment can be modeled as a 
capacitor. In presence of multiple segments, we obtain a system of series-
connected capacitors. Let us depict a system of two series-connected capacitors 
of different values 1С    and 2С  (Fig. 28a). Adjacent segments are relevant to 
adjacent half-wave instantaneous charge distribution, thus having opposite sign. 
 

 
 
 

 
 

 
                                     а)                                        b) 

 
Fig. 28 

 
 This system can be represented as a non-homogeneous multi-layer 

capacitor (Fig 28b). Such a system can be replaced by a single capacitor, which 
creates a field: 

21 EEE  . 
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1q  
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 That is induced (irrotational) electric fields arising in adjacent segments are 
partially compensated. This is taken into account assigning  alternating signs to 
the coefficients nL  in the series computation. 

 
Number The inner 

radius  
nr  (mm)  

Outer radius  
nR (mm) 

Number of 
turns 

Section 
 inductive 

factor 
nL  H610  

1 5 23 10,5 +0,262 
2 23 32,25 5,5 -0,107 
3 32,25 39 4,25 +0,023 
4 39 45,5 3,5 -0,019 
5 45,5 51 3 +0,015 
6 50,5 55,5 2,75 -0,009 
7 

(not complete) 
55,5 58,5 1,5 +0,004 

Sum   31 0,169 
 
Now, from the irrotational inductive factor value, we can calculate the 

frequency of the second resonance peak, almost identical to the test result: 
 

MHz
CL

f 1621
2
1

2 


. 

 
Using the above values of inductive factors, we can get the resulting 

combined Tesla coil inductance: 
H

LL
LLL 610096,0 



 


 . 

 
This yields an estimated value of the third resonance peak: 
 

MHz
LC

f 2151
2
1

3 


. 

 
 Such value  is very different from the experimental  MHzf 8,1793   one. 

A likely reason is that, at the frequency of the third resonance peak, 3f  , the 
above choice of segmentation is not suitable to calculate the actual factors L  
and L , since at the actual  MHzf 8,1793   frequency, the half-wavelength 
value is 0.83m. Thus, we should adopt eight segments, instead. In the table 
below we calculated,  3fL  and  3fL , with such segmentation, and, 
therefore, we are able to calculate the combined value  3fL . 



 
Number The inner 

radius  
nr  (mm)  

Outer 
radius  

nR (mm) 

Number of 
turns 

Section 
 inductive 

factor 
nL  H610  

Section 
 inductive 

factor 
nL  H610  

1 5 22 10 0,079 +0,238 
2 22 30,5 5 0,034 -0,041 
3 30,5 37,3 4 0,027 +0,024 
4 37,3 42,8 3,25 0,022 -0,014 
5 42,8 47,7 2,9 0,019 +0,011 
6 47,7 52,15 2,6 0,017 -0,008 
7 52,15 56,2 2,4 0,016 +0,007 
8  

(not 
complete) 

56,2 58,5 0,85 0,009 -0,002 

Sum   31 0,223 0,215 
 

H
LL

LLL 610109,0 



 


      MHz
LC

f 2021
2
1

3 


. 

 
This is a more accurate result, it differs from the experimental value by about 
10%. 

As it is clear, the obtained value, 3f , resulted from a segmentation choice 
that was to be set according to the 3f  wavelength itself, that usually is not 
known a priori. So, some degree of iteration could be needed in seeking a result. 
 

6. Analysis of the new observed phenomena 

6.1 Interpretation of the Faraday Cage phenomena 
The experiments carried out using the Faraday cage led, as mentioned in 

the relevant section above, quite puzzling results. The cage shielding capability 
changes dramatically depending on the ground return wire connection to the 
cage itself. 

Using typical criteria, it would be expected that no electromagnetic signal 
can be transmitted through the cage, when a small hole is present in the cage 
wall, if the size of such hole is small compared with the operating wavelength. 
In our experiment the operating wavelength (at the resonance) is about 30m, and 
the hole diameter is about  0.01m. In spite of this, in the first test configuration 
(Fig. 18)  the transmission trough the Faraday cage could take place without any 
extra attenuation5.  

                                                             
5 At the resonances, the transmission loss 21S , has basically the same values as in the experiment on 
the table, without Faraday cage. 



A possible hypothesis for  this phenomenon  is that a surface wave is 
transmitted over the “ground” wire itself. This kind of wave is a transverse-
magnetic (TM) mode, thus longitudinal electric, and can be guided by and along 
the wire itself. However, we are not convinced by this hypothesis, since the 
transit of the wire through a tight hole in the cage metal wall should introduce a 
mode mismatch and impedance mismatch as well. In facts,  the structure 
describing an insulated wire passing in the hole is basically a short coaxial line. 
As a matter of facts, the hole used was in facts a female N-N, 50 Ohm, pass-
through connector, available in the Faraday cage patch panel. Only the inner 
conductor was used. The main mode in the coax section is obviously the TEM. 
Moreover, the estimated single-wire TM mode  impedance is about 400 Ohm 
[18], so a fairly high impedance mismatch would be expected. This is not 
consistent with the (almost) zero extra loss obtained in the transmission  
parameter S21. 
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Fig. 29 

The next hypothesis is based on the generalized electrodynamics.  Let us 
consider the “Test 1” experiment, as depicted in Fig. 29. Due to the additional 

term 
t

B



*

0  present in the generalized equation (10), unsteady charge is 

created on the transmitting antenna. Also, the non-stationary SMF induced on 



the metal surface of the cage becomes a variable electric charge. The charges on 
the radiating antenna and the Faraday cage change in phase. Thus, the cage 
itself  become a transmitting antenna. Incidentally, the cage is grounded to earth 
through wires that have not negligible length (nor negligible inductance), so this 
doesn’t prevent unsteady potential.  In Fig.29 is  shown the system at a time 
instant when the radiating antenna is positively charged. Faraday cage at this 
time, too, has a positive charge. Time-dependent electric field is created at the 
same time outside the cell. Thus, electroscalar waves are not shielded Faraday 
cage under the conditions of Test 1. This is a peculiar difference from transverse 
electromagnetic waves. 

In Test 2 the sphere antenna and the Faraday cage formed a structure quite 
similar to a spherical capacitor:  their charges at any time have different signs 
(Fig. 30). Electromagnetic process occurring inside the capacitor, does not go 
beyond it. Under these conditions,  the Faraday cage effectively screened the 
electroscalar  waves. 
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Fig. 30 

7 Conclusions 
In conclusion, we can say that the miniature experimental model of Meyl, 

cannot  reproduce the whole experimental conditions of the original Tesla 
experiment. Obviously, those processes that take place at high voltage (high 
frequency), including those involving high slew-rates, cannot be reproduced. 



However, the simplified, down-scaled Meyl set-up revealed some interesting 
and unusual aspects. 

 Most of the phenomena reported by K. Meyl have been observed and 
confirmed by us. The only exception is the claim of superluminal propagation 
velocity of electroscalar waves. This hypothesis has not found  theoretical nor 
experimental confirmation. 

We performed many additional experiments that revealed interesting new 
facts, namely: 

•  the independence of attenuation of the distance between the transmitter 
and the receiver (at least at the main resonance in the experiment). This could 
open interesting perspectives for communication and power transmission; 

• the conditions under which a Faraday cage does not screen the 
electromagnetic waves emitted by a spherical antenna. 

The hypothesis  that the signal is transmitted from the Faraday cage with 
the help of transverse electromagnetic waves (TM), which spread along the 
ground wire is not considered satisfactory, due to the lack of any observed TM 
mode impedance mismatch loss, trough the Faraday cage. 

The electroscalar waves model is a good theoretical tool with which 
explains the observed phenomena. A theory based on the generalized 
electrodynamics equations, adequately explains the mechanism of propagation 
of electromagnetic radiation and scalar waves. The processes occurring in the 
Tesla transformer, is well explained on the basis of representations of the vortex 
and potential electromagnetic processes. In particular, it is worth to be 
emphasized the role of the scalar magnetic field in the Tesla helical coils. 

This research resulted in the following results: 
• it is suggested that the signal propagation between the transmitter and 

receiver is carried by a electromagnetic wave process occurring between the 
spherical antennas; 

• it has been shown that in this system the electromagnetic waves differ in 
their properties on the transverse Hertzian waves; 

• The experimental results have been explained on the basis of the 
generalized (four) electromagnetic  theory, which unites the vortex and potential 
electromagnetic processes; 

• it is suggested that the signal transmission between the spherical antenna 
is performed by means of electroscalar waves; 

• it has been established experimentally that the signal is transmitted 
without extra loss over long distances, which excludes the hypothesis of the 
capacitive coupling between the antennas; 

• it has been theoretically described the operation principle of the Tesla 
transformer, consisting of two helical coils; 

• it has been explained the cause of resonance with the three peaks; 
• it has been theoretically calculated the frequencies of the resonance peaks 

in the HF-VHF range, in good agreement with the experimental values; 
• finally, it has been investigated and described the mechanism of 

interaction of electroscalar waves with  Faraday cage: in which operating 



condition it performs as a shield, and, on the contrary, in which operating 
condition it is transparent to the electroscalar waves. 
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