
ar
X

iv
:g

r-
qc

/0
40

20
05

v2
  2

9 
Ju

l 2
00

4

Einstein-Aether Waves
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Local Lorentz invariance violation can be realized by introducing extra tensor fields in the action
that couple to matter. If the Lorentz violation is rotationally invariant in some frame, then it is
characterized by an “aether”, i.e. a unit timelike vector field. General covariance requires that the
aether field be dynamical. In this paper we study the linearized theory of such an aether coupled to
gravity and find the speeds and polarizations of all the wave modes in terms of the four constants
appearing in the most general action at second order in derivatives. We find that in addition to the
usual two transverse traceless metric modes, there are three coupled aether-metric modes.

I. INTRODUCTION

Recently there has been an explosion of research on the
possibility that Lorentz invariance is violated by quan-
tum gravity effects (see e.g. [1] and references therein).
In a non-gravitational setting, it suffices to specify fixed
background fields violating Lorentz symmetry in order to
formulate the Lorentz violating (LV) matter dynamics.
However, fixed background fields break general covari-
ance. If we are to preserve the successes of general rela-
tivity in accounting for gravitational phenomena, break-
ing general covariance is not an option. The obvious
alternative is to promote the LV background fields to dy-
namical fields, governed by a generally covariant action.
Virtually any configuration of any matter field breaks
Lorentz invariance, but this differs in an important way
from what we have in mind. The LV background fields
we are contemplating are constrained either dynamically
or kinematically not to vanish, so that every relevant
field configuration violates local Lorentz symmetry ev-
erywhere, even in the the “vacuum”.

If the Lorentz violation preserves a three-dimensional
rotation subgroup, then the background field must be
only a timelike vector, which might be described by the
gradient of a scalar, or by a vector field. In this paper we
consider just the case where the LV field is a unit time-
like vector ua, which can be viewed as the minimal struc-
ture required to determine a local preferred rest frame.
We call this field the “aether”, as it is ubiquitous and
determines a locally preferred frame at every point of
spacetime. Kinetic terms in the action couple the aether
directly to the spacetime metric, in addition to any cou-
plings that might be present between the aether and the
matter fields. We refer to the system of the metric cou-
pled to the aether as “Einstein-aether theory”.

Here we investigate the linearized wave spectrum of
this theory, and determine the complete set of mode
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speeds and polarizations for generic values of the free
parameters in the action. (Results for different special
cases were previously published in Refs. [2, 3].) These
results identify the choices of constants in the action for
which the linearized field equations are hyperbolic (and
hence admit an initial value formulation), and they will
be useful in extracting the observable consequences of
such an aether field.

Related work goes back at least to the 1970’s, when
Nordtvedt and Will began a study of vector-tensor theo-
ries of gravity [4, 5, 6, 7], which differed from the present
work primarily in the fact that the norm of the vec-
tor was not constrained. Gasperini, using a tetrad for-
malism, studied in a series of papers [8] an equivalent
formulation of the Einstein-aether theory studied here.
Further related work has been done by Kostelecky and
Samuel [9] and Jacobson and Mattingly [2] in the spe-
cial case where the aether dynamics is Maxwell-like. The
spherically symmetric weak field solutions were found for
the general Einstein-aether theory by Eling and Jacob-
son [10]. Vector-tensor theories have been studied in a
cosmological context by Clayton and Moffatt [11, 12] and
Bassett et al [13]. The issues of causality and shocks in
vector-tensor theories were studied by Clayton [14]. Fur-
ther discussion on previous work can be found in [2, 10].
A proposal for Lorentz symmetry breaking via a scalar
field with unusual kinetic term that makes the gradient
tend to a timelike vector of constant norm has recently
been investigated by Arkani-Hamed et al [15, 16]. Most
recently, the issue of Lorentz violation in a gravitational
setting has been examined in a systematic way by Kost-
elecky [17].

II. EINSTEIN-AETHER THEORY

In the spirit of effective field theory, we consider
a derivative expansion of the action for the metric
gab and aether ua. The most general action that is
diffeomorphism-invariant and quadratic in derivatives is

S =
1

16πG

∫

d4x
√−g

(

−R + Lu − λ(uaua − 1)
)

(1)
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where

Lu = −Kab
mn∇aum∇bu

n (2)

with

Kab
mn = c1g

abgmn+c2δ
a
mδb

n+c3δ
a
nδb

m+c4u
aubgmn, (3)

R is the Ricci scalar, and λ is a Lagrange multiplier
that enforces the unit constraint. The metric signature
is (+−−−), units are chosen such that c=1, and other
than the signature choice we use the conventions of [18].

The presence of the Lagrange multiplier and c4 terms
differentiate this theory from the vector-tensor theories
considered in [7]. The possible term Rabu

aub is propor-
tional to the difference of the c2 and c3 terms via integra-
tion by parts and hence has been omitted. We have also
omitted any matter coupling since we are interested here
in the dynamics of the metric-aether sector in vacuum.

Varying the action (1) with respect to ua, gab, and l
yields the field equations

∇aJa
m − c4u̇a∇mua = λum (4)

Gab = Tab (5)

gabu
aub = 1 (6)

where to compactify the notation we have defined

Ja
m = Kab

mn∇bu
n (7)

and

u̇m = ua∇aum, (8)

and the aether stress tensor is

Tab = ∇m(J(a
mub) − Jm

(aub) − J(ab)u
m)

+c1 [(∇mua)(∇mub) − (∇aum)(∇bu
m)]

+c4 u̇au̇b

+
[

un(∇mJmn) − c4u̇
2
]

uaub

−1

2
gabLu. (9)

In the above expression the constraint has been used to
eliminate the term that arises from varying

√−g in the
constraint term in (1), and in the fourth line λ has been
eliminated using the aether field equation.

A. Linearized field equations

The first step in finding the wave modes is to linearize
the field equations about the flat background solution
with Minkowski metric ηab and constant unit vector ua.
The fields are expanded as

gab = ηab + γab (10)

ua = ua + va. (11)

The Lagrange multipler l vanishes in the background,
so we use the same notation for the its linearized ver-
sion. Indices are raised and lowered with ηab. We adopt
Minkowski coordinates (x0, xi) aligned with ua, i.e. for
which ηab = diag(1,−1,−1,−1) and ua = (1, 0, 0, 0).
The letters i, j, k, l are reserved for spatial coordinate in-
dices, and repeated spatial indices are summed with the
Kronecker delta.

Keeping only first order terms in va and γab, the field
equations become

∂aJ (1)a
m = λum (12)

G
(1)
ab = T

(1)
ab (13)

v0 + 1
2γ00 = 0 (14)

where the superscript (1) denotes the first order part of
the corresponding quantity. The linearized Einstein ten-
sor is

G
(1)
ab = − 1

2�γab − 1
2γ,ab

+γm(a,b)
m + 1

2ηab(�γ − γmn,
mn), (15)

where γ = γm
m is the trace, while the linearized aether

stress tensor is

T
(1)
ab = ∂m[J

(1)
(a

mub) − J (1)m
(aub) − J

(1)
(ab)u

m]

+[un(∂mJ (1)mn)]uaub (16)

If we impose the linearized aether field equation (12) then

the second and last terms of this expression for T
(1)
ab can-

cel, yielding

T
(1)
ab = −∂0J

(1)
(ab) + ∂mJ

(1)
(a

mub), (17)

The linearized quantity J
(1)
ab is given by

J
(1)
ab = c1∇aub+c2ηab∇mum+c3∇bua+c4ua∇0ub, (18)

where the covariant derivatives of ua are expanded to
linear order, i.e. replaced by

(∇aub)
(1) = (vb + 1

2γ0b),a + 1
2γab,0 − 1

2γa0,b. (19)

This completes an explicit display of the linearized field
equations.

The aether perturbations are coupled to metric per-
turbations, due to the presence of the background aether
vector ua. Were it not for the aether background, the lin-
earized aether stress tensor (16) would vanish, and the
metric would drop out of the aether field equation, leav-
ing all modes uncoupled.

B. Gauge choice

Diffeomorphism invariance of the action (1) implies
that the field equations are tensorial, hence covariant
under diffeomorphisms. The linearized equations inherit
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the linearized version of this symmetry. To find the in-
dependent physical wave modes we must fix the corre-
sponding gauge symmetry.

An infinitesimal diffeomorphism generated by a vector
field ξa transforms gab and ua by

δgab = Lξgab = ∇aξb + ∇bξa, (20)

δua = Lξu
a = ξm∇mua − um∇mξa. (21)

In the linearized context, the vector field ξa is itself first
order in the perturbations, hence the linearized gauge
transformations take the form

γ′

ab = γab + ∂aξb + ∂bξa (22)

v′a = va − ∂0ξ
a. (23)

The usual choice of gauge in vacuum GR is Lorentz
gauge ∂aγ̄ab = 0, where γ̄ab = γab − 1

2γηab. This gauge
is chosen because it simplifies the Einstein tensor. The
residual gauge freedom, which exploits the field equa-
tions, further allows one to impose γ0i = 0 and γ = 0.
In the present case, the aether stress tensor (17) contains
multiple terms in the derivatives of the metric pertur-
bation and so Lorentz gauge is not particularly helpful.
Moreover, the residual gauge freedom cannot be used to
set γ0i and γ to zero since these do not satisfy the wave
equation.

Instead, a convenient choice is to directly impose the
four gauge conditions1

γ0i = 0 (24)

vi,i = 0. (25)

To see that this gauge is accessible, note that the gauge
variations of γ0i and vi,i are, according to (22–23),

δγ0i = ξi,0 + ξ0,i (26)

δvi,i = −ξi,i0 (27)

Thus to achieve the gauge (24–25) we must choose ξ0 and
ξi to satisfy equations of the form

ξi,0 + ξ0,i = Xi (28)

ξi,i0 = Y. (29)

Subtracting the second equation from the divergence of
the first gives

ξ0,ii = Xi,i − Y, (30)

which determines ξ0 up to constants of integration by
solving Poisson’s equation. Then ξi can be determined
up to a time-independent field by integrating (28) with

1 Alternatively, instead of setting vi,i to zero it is equally conve-

nient for finding the plane wave modes to set the spatial trace

γii to zero.

respect to time. Having made these choices of ξ0 and ξi,
(28) holds, and the divergence of (28) implies that (29)
holds.

In the gauge (24–25) the tensors in the aether (12) and
spatial metric equations (13) take the forms

Jai,
a = c14(vi,00 − 1

2γ00,i0)

−c1vi,kk − 1
2c13γik,k0 − 1

2c2γkk,0i (31)

G
(1)
ij = − 1

2�γij − 1
2γ,ij − γk(i,j)k

− 1
2δij(�γ − γ00,00 − γkl,kl) (32)

T
(1)
ij = −c13(v(i,j)0 + 1

2γij,00) − 1
2c2δijγkk,00 (33)

where we use the notation c14 := c1 + c4, etc.

III. WAVE MODES

In General Relativity there are just two modes per spa-
tial wave vector. Since va has three independent degrees
of freedom, we expect that in the Einstein-aether case
there will be five modes all together. We now determine
the wave modes in the chosen gauge.

We assume a perturbation of the form

γab = ǫabe
ikcxc

(34)

va = ǫaeikcxc

, (35)

and choose coordinates such that the wavevector is
(k0, 0, 0, k3). The gauge conditions (24–25) then imply

ǫ0i = 0 (36)

ǫ3 = 0. (37)

The problem is now to find the set of polarizations
(ǫab, ǫa) and corresponding wave vectors ka for which the
perturbation is a solution to the field equations (12–14).

The 0 component of the aether field equation (12) is
solved by definition of l, while the constraint equation
(14) implies the relation

ǫ0 = − 1
2ǫ00. (38)

This leaves the spatial components of the aether equa-
tion, together with the linearized Einstein equation. It
suffices to use the spatial components of the Einstein
equation, as the other components yield redundant in-
formation (although they do provide useful algebraic
checks).

Inserting the plane wave ansatz (34,35) into the field
equations yields

[AI ] (c14s
2 − c1)ǫI − 1

2c13sǫI3 = 0 (39)

[A3] c14ǫ00 + c123ǫ33 + c2ǫII = 0 (40)

[EII ] ǫ00 + (1 + c2)s
2ǫ33 + 1

2

×
[

(1 + c2 + c123)s
2 − 1

]

ǫII = 0 (41)

[E11 − E22]
[

(1 − c13)s
2 − 1

]

(ǫ11 − ǫ22) = 0 (42)
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TABLE I: Wave mode speeds and polarizations in the gauge γ0i = vi,i = 0.

Wave mode squared speed s2
→ small ci limit polarization

transverse, traceless metric 1/(1 − c13) → 1 γ12, γ11 = −γ22

transverse aether (c1 −
1

2
c2

1 + 1

2
c2

3)/c14(1 − c13) → c1/c14 γI3 = [c13/s(1 − c13)]vI

trace (c123/c14)(2 − c14)/
[

2(1 + c2)
2
− c123(1 + c2 + c123)

]

→ c123/c14 γ00 = −2v0

γ11 = γ22 = −c14v0

γ33 = (2c14/c123)(1 + c2)v0

[E12]
[

(1 − c13)s
2 − 1

]

ǫ12 = 0 (43)

[EI3] c13ǫI + (−1 + c13)sǫI3 = 0 (44)

[E33] (1 + c2)ǫII + c123ǫ33 = 0, (45)

where [Ai] and [Eij ] indicate the components of the
aether and Einstein equations. We use the notation
s = k0/k3 for the wave speed (which will be a true
“speed” only when s2 > 0), and the index I is dedi-
cated to the two transverse spatial directions I = 1, 2, so
that ǫII = ǫ11 + ǫ22 is the trace of the transverse spatial
part of the metric polarization ǫab.

We analyze the independent mode solutions assuming
generic values of the constants c1,2,3,4. There are a total
of five modes, two with an unexcited aether which corre-
spond to the usual GR modes, two “transverse” aether-
metric modes, and a fifth trace aether-metric mode. The
two modes corresponding to the usual gravitational waves
in GR are found when all polarization components van-
ish except ǫ11, ǫ22 and ǫ12. To avoid over-determining
the speed s the trace equation [EII ] must be identically
satisfied, hence ǫII = 0. Then the [E11 − E22] and [E12]
equations yield the speed.

The two transverse aether-metric modes have nonzero
polarization components ǫI and ǫI3, and the [AI ] and
[EI3] equations together yield the speed and the ratio
ǫI3/ǫI . The fifth and final mode involves only ǫ0 and
the diagonal polarization components ǫaa (no sum on
a = 0, 1, 2, 3). To avoid over-determining the speed, the
difference equation [E11 − E22] = 0 must be identically
satisfied, hence ǫ11 = ǫ22 = ǫII/2. Equations [A3] and
[E33] and the constraint (38) then allow all polarization
components to be expressed in terms of just one, after
which [EII ] determines the speed. The resulting mode
polarizations and speeds are displayed in Table I.

In the limit ci → 0 the transverse traceless modes
become the usual gravitational waves, with unit speed.
Note that these modes are entirely decoupled from the
aether perturbations even when ci 6= 0.

The small ci limits of the transverse aether and trace
mode speeds depend on the ratios of the constants. If
c2,3,4 vanish both speeds approach unity, but any other
value is possible. The wave speeds and non-zero polar-
ization components for the special case c2,3,4 = 0 were
previously reported in [3] (the speed for the trace mode
is inverted there), and the Maxwell-like case c13 = c2 =
c4 = 0 was analyzed in [2] (in both cases using different

gauges). In the latter case, the transverse waves all have
unit speed, while the trace mode has zero speed, so does
not exist as a propagating wave.

A peculiar special case occurs if c14 = 0, since then the
aether wave speeds are generally infinite. This happens
because no time derivatives of the aether field then arise
in the field equation (31) = 0. (The more special case
c14 = c23 = 0 was shown by Barbero and Villaseñor [19]
to be equivalent to general relativity via a ua dependent
field redefinition of the metric.)

When the constants ci are chosen so that s2 is positive
and finite for all modes, the linearized equations are evi-
dently hyperbolic. (It is not known whether this property
extends to the nonlinear equations.) In these cases, since
the dispersion relation ø = sk is linear, |s| represents
the signal propagation speed of disturbances. It is easily
checked from Eqns. (41)-(45) that the Einstein tensor has
nonvanishing components for each of the modes. (These
equations display components of Gab −Tab, so just those
of Gab remain when the ci are set to zero.) Hence the
modes all have gauge-invariant, physical significance.

If s2 is negative for a mode then the corresponding
frequency is imaginary, indicating the existence of expo-
nentially growing and decaying solutions. In such a case
the theory is unstable and hence presumably unphysical.

IV. OBSERVATIONAL APPLICATIONS

An important open question is the sign of the energy of
the various wave modes. To answer this, it is necessary to
first determine the expression for energy in the linearized
Einstein-aether theory, which has not yet been done.

To compare the wave behavior of the theory with ob-
servations the wave emission from astrophysical sources
must be determined. To begin with, the analog of the
quadrupole formula would enable the decay of binary
pulsar orbits to be computed. Note that the presence
of transverse aether and trace modes strongly suggests
that dipole and monopole radiation will also exist and
contribute to the energy loss.

The wave emission depends of course on how the aether
field couples to matter. A direct coupling could lead to
local Lorentz violating effects which may exist but are al-
ready quite constrained. However, even a small coupling
to the matter source might be large enough to produce
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an observable effect. Even without any direct coupling
to matter, the extra modes will still be excited through
their coupling to the time dependent metric produced by
the moving matter sources.

The results obtained here for the linearized theory
should also be useful in computing the PPN parameters.
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